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1.1 poloidal flux and rotational transform

Given the canonical integrable form, A = ψ∇θ−χ(ψ)∇ζ, we can derive B = ∇ψ×∇θ +∇ζ ×∇ψ χ′. The poloidal flux is given by

Ψp =

∫ ∫
B · eζ × eψ dζdψ = 2π

∫
χ′dψ. (1)

The rotational-transform is

ι- =
B · ∇θ

B · ∇ζ
= χ′. (2)

The rotational-transform is the same sign as the poloidal flux.

The SPEC representation for the magnetic vector potential is

A = Aθ∇θ + Aζ∇ζ, (3)

where we can see that Aζ = −χ. The poloidal flux is
∫

B · ds =

∮
Aζdζ. (4)

It would seem that the rotational-transform has opposite sign to Aζ . To be honest, I am a little confused regarding the sign.

1.2 Outline

This document is intended to organise the different potentially valuable improvements to the SPEC code, which could make it

more robust, faster, and increase its capabilities. The document is divided in two categories. In Sec.1.3, Numerical Improvements:

independent improvements that are of numerical importance but have no added physics value per se, although they may allow new or

better physics investigations. In Sec.1.4, research topics that could be addressed with the code, either in its present form or after the

completion of one or more topics listed in Sec.1.3.
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1.3 Numerical Improvements

1.3.1 Downloading SPEC to Git

This should be straight forward and easy. SRH will work on this. Estimated date of completion 06/2017.

1.3.2 Compile code with GCC for error checking

1.3.3 Profile code with gprof to find inefficient lines of code

1.3.4 Run code with Valgrind to identify memory leaks

1.3.5 De-NAG-ification

This will take time . . . It is not, at present, crucial, as we all have access to NAG.

1.3.6 Revision of spectral-constraints

This is bit of a mess. All the mathematics is standard, and all that is required is for someone to calmly go through lots of algebra.

This task should be high priority, as SRH suspects that the spectral constraints as presently enforced result in an ill-conditioned force

vector, which means that the code is overly sensitive to the initial guess and does not converge robustly. Potential speed improvements

are tremendous.

1.3.7 Extension to arbitrary toroidal angle

This can further reduce the required Fourier resolution, and so this can reduce the computation. SRH is particularly interested in

this as it will allow for exotic configurations (knots, figure-8, etc.) that cannot presently be computed.

1.3.8 Exploit symmetry of the metric

This is easy, but somewhat tedious. Take a look at ma00aa to see what is required. Potential speed improvement is considerable.

1.3.9 Exploit symmetry of “local” Beltrami matrices

This is easy. Take a look at matrix, which constructs the Beltrami matrices, and mp00ac, which performs the inversion. Potential

speed improvement is considerable.

1.3.10 Exploit block tri-diagonal structure of “global” linearized force balance matrix

This requires an efficient subroutine. SRH believes that Hirshman constructed such a routine [S.P. Hirshman et al. (2010)1]. The

potential speed improvement is tremendous. See newton for where the tri-diagonal, linearized force-balance matrix is inverted.

1.3.11 Enforce Helicity constraint

This will allow investigation of different, arguably more-physical classes of equilibria. See ma02aa

1.3.12 Establish test-cases

A suite of test cases should be constructed, with different geometries etc., that run fast, and that can be benchmarked to machine

precision.

1.3.13 Verify free-boundary

This is almost complete. The virtual casing routines need to be investigated and made more efficient. The virtual casing routine

in slab geometry needs revision (because of an integral over an infinite domain).

1.3.14 Enforcement current “profile”

i.e., adjust µ’s, fluxes and/or rotational transform to obtain desired current profile (without singular currents). This should be a

reasonably simple task. An additional routine is required to iterate on the helicity multipliers etc. as required after the local Beltrami

fields have been calculated and before the global force balance iterations proceed.

1.3.15 Interpret eigenvectors and eigenvalues of Hessian

This is already completed: see hesian. For toroidal geometry there is a complication; namely that the hessian matrix includes the

derivatives of the spectral constraints. For Cartesian geometry, it is ready to go. SRH will begin writing a paper on the stability of

slab MRxMHD equilibria.

1.4 Physics Applications

1.4.1 Calculate high-resolution equilibria

e.g. W7-X. requires: Sec.1.3.8, Sec.1.3.9, and other improvements that can make the code faster at high Fourier resolution

1.4.2 Calculate equilibria by conserving helicity and fluxes

Applications to saturated island studies, sawteeth, etc. requires: Sec.1.3.11

1.4.3 Calculate free-boundary stellarator equilibria

to predict scrape-off-layer (SOL) topologies and β-limits. requires: Sec.1.3.13

1.4.4 Evaluate stability of MRxMHD equilibria

perhaps starting from simplest system (slab tearing). requires: Sec.1.3.15

1.5 Revision of coordinate singularity: axisymmetric; polar coordinates;

1. Consider a general, magnetic vector potential given in Cartesian coordinates,

A = Ax∇x + Ay∇y + Az∇z + ∇g (5)

1S.P. Hirshman, K.S. Purumalla et al., J. Comput. Phys. 229, 6392 (2010)
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where Ax, Ay, Az, and the as-yet-arbitrary gauge function, g, are regular at (x, y) = (0, 0), i.e. they can be expanded as a Taylor

series, e.g.

Ax =
∑
i,j

αi,jx
iyj , Ay =

∑
i,j

βi,jx
iyj , Az =

∑
i,j

γi,jx
iyj , g =

∑
i,j

δi,jx
iyj , (6)

for small x and small y.

2. Note that we have restricted attention to the “axisymmetric” case, as there is no dependence on z.

3. The ‘polar’ coordinate transformation,

x = r cos θ,

y = r sin θ, (7)

z = ζ,

induces the vector transformation

∇x = cos θ ∇r − r sin θ ∇θ ,

∇y = sin θ ∇r + r cos θ ∇θ ,

∇z = ∇ζ .

(8)

4. By repeated applications of the double-angle formula, the expressions for Ax, Ay and g can be cast as functions of (r, θ),

Ax =
∑
m

rm[am,0 + am,1 r2 + am,2 r4 + . . .] sin(mθ), (9)

Ay =
∑
m

rm[bm,0 + bm,1 r2 + bm,2 r4 + . . .] cos(mθ), (10)

Az =
∑
m

rm[cm,0 + cm,1 r2 + cm,2 r4 + . . .] cos(mθ), (11)

g =
∑
m

rm[gm,0 + gm,1 r2 + gm,2 r4 + . . .] sin(mθ), (12)

where attention is restricted to stellarator symmetric geometry, but similar expressions hold for the non-stellarator symmetric

terms.

5. Collecting these expressions, the vector potential can be expressed

A = Ar∇r + Aθ∇θ + Aζ∇ζ + ∂rg ∇r + ∂θg ∇θ, (13)

where

Ar = r0 [ ( b0,0 + g1,0 ) + (. . .)r2 + (. . .)r4 + . . . ] sin θ

+ r1 [ ( a1,0/2 + b1,0/2 + 2g2,0 ) + (. . .)r2 + (. . .)r4 + . . . ] sin 2θ

+ r2 [ ( a2,0/2 + b2,0/2 + 3g3,0 ) + (. . .)r2 + (. . .)r4 + . . . ] sin 3θ

+ . . .

(14)

(Note: Mathematica was used to perform the algebraic manipulations, and the relevant notebook is included as part of the SPEC

CVS repository.)

6. There is precisely enough gauge freedom so that we may choose Ar = 0. For example, the choice

g1,0 = − b0,0 ,

g2,0 = − ( a1,0/2 + b1,0/2 ) / 2 ,

g3,0 = − ( a2,0/2 + b2,0/2 ) / 3 ,

. . . = . . .

(15)

eliminates the lowest order r dependence in each harmonic.

7. By working through the algebra (again, using Mathematica) the expressions for Aθ and Aζ become

Aθ = r2f0(ρ) + r3f1(ρ) cos(θ) + r4f2(ρ) cos(2θ) + r5f3(ρ) cos(3θ) + . . . (16)

Aζ = g0(ρ) + r1g1(ρ) cos(θ) + r2g2(ρ) cos(2θ) + r3g3(ρ) cos(3θ) + . . . (17)

where ρ ≡ r2 and the fm(ρ) and gm(ρ) are abitrary polynomials in ρ. [The expression for Aζ is unchanged from Eqn.(11).]

3



1.5.1 somewhat generally, . . .

1. For stellarator-symmetric configurations,

A =
∑
m,n

Aθ,m,n cos(mθ − nζ)∇θ +
∑
m,n

Aζ,m,n cos(mθ − nζ)∇ζ, (18)

where now the dependence on ζ is included, and the angles are arbitrary.

2. The near-origin behaviour of Aθ and Aζ given in Eqn.(16) and Eqn.(17) are flippantly generalized to

Aθ,m,n = rm+2fm,n(ρ), (19)

Aζ,m,n = rm gm,n(ρ), (20)

where the fm,n(ρ) and gm,n(ρ) are arbitrary polynomials in ρ.

3. Additional gauge freedom can be exploited: including an additional gauge term ∇h where h only depends on ζ, e.g.

h(ζ) = h0,0 ζ +
∑

h0,n sin(−nζ), (21)

does not change the magnetic field and does not change any of the above discussion.

4. The representation for the Aθ,m,n does not change, but we must clarify that Eqn.(20) holds for only the m 6= 0 harmonics:

Aζ,m,n = rm gm,n(ρ), for m 6= 0. (22)

5. For the m = 0, n 6= 0 harmonics of Aζ , including the additional gauge gives Aζ,0,n = g0,n(ρ) + nh0,n. Recall that g0,n(ρ) =

g0,n,0 + g0,n,1ρ + g0,n,2ρ
2 + . . ., and we can choose h0,n = −g0,n,0/n to obtain

Aζ,m,n = rm gm,n(ρ), for m = 0, n 6= 0, with gm,n(0) = 0. (23)

6. For the m = 0, n = 0 harmonic of Aζ , we have Aζ,0,0 = g0,0(ρ) + h0,0. Similarly, choose h0,0 = −g0,n,0 to obtain

Aζ,m,m = rm gm,n(ρ), for m = 0, n = 0, with gm,n(0) = 0. (24)

7. To simplify the algorithmic implementation of these conditions, we shall introduce a ‘regularization’ factor, ρm/2 = rm.

8. Note that the representation for Aθ,m,n given in Eqn.(19), with an arbitrary polynomial fm,n(ρ) = fm,n,0+fm,n,1ρ+fm,n,2ρ
2+. . .,

is equivalent to Aθ,m,n = ρm/2αm,n(ρ) where αm,n(ρ) is an arbitrary polynomial with the constraint αm,n(0) = 0.

9. We can write the vector potential as

Aθ,m,n = ρm/2αm,n(ρ), with αm,n(0) = 0 for all (m,n), (25)

Aζ,m,n = ρm/2βm,n(ρ), with βm,n(0) = 0 for m = 0. (26)

1.5.2 non-stellarator symmetric terms

1. Just guessing, for the non-stellarator-symmetric configurations,

Aθ,m,n = ρm/2αm,n(ρ), with αm,n(0) = 0 for all (m,n), (27)

Aζ,m,n = ρm/2βm,n(ρ), with βm,n(0) = 0 for m = 0. (28)

manual.h last modified on 2018-01-15 19:57:20; SPEC subroutines;
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